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Abstract

For flows presenting linear instabilities, the laminar regime can be delimited accurately by the onset of the first bifurcation. For an
unheated sphere, the primary bifurcation is preceded by a detachment of the boundary layer and a build up of a recirculation zone. In the
mixed convection, the convection tends to prevent the boundary layer of the assisting flow from detaching and from a build up a recir-
culation zone. In this paper, the issue of the correlation between the boundary layer detachment and the loss of axisymmetry in the assist-
ing flow is investigated with a special focus to the Prandtl number corresponding to flows in air (Pr = 0.72). For Richardson numbers up
to 0.7, the detachment of the boundary layer (not necessarily a build up of the recirculation zone) is shown to be a precursor sign of a
regular primary bifurcation similarly as for the wake of an unheated sphere. At this bifurcation, the flow stays steady but looses its axi-
symmetry. To assess the Prandtl number effects, the separation of the axisymmetric flow is investigated also in the Pr = 7 parameter
plane and for Pr varying between 0.1 and 100 at fixed Reynolds and Richardson number values. The interest of the obtained results
is twofold. Firstly, in the investigated parameter sub-domain, clear limits of the physical relevance of axisymmetric computations have
been found. Within these limits, accurate values of the drag coefficients and overall Nusselt numbers are given. Secondly, in axisymmetric
simulations, the detachment of the boundary layer may be a useful indication of the possible loss of axisymmetry.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mixed convection refers to flows driven both by buoy-
ancy effects in a differentially heated fluid and an external
flow. The mutual direction of the gravity and of the exter-
nal flow is of particular importance for the flow dynamics
and assisting, opposing and cross flow are distinguished in
most studies. In the literature, significant attention has
been paid to the investigation, mostly experimental, of
the cross flow past a horizontal cylinder [1–3]. Numerical
investigations of flows past a heated sphere take mostly
advantage of the axisymmetry of the purely convective
and of the assisting and opposing flows, characterized by
an equal direction and, respectively, equal and opposed
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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orientation of the external flow and of the buoyancy. The
case of convection past a heated sphere has been recog-
nized of special interest for understanding hydrodynamic
and thermal effects present in many engineering processes
such as vaporization of fuel droplets, combustion, conden-
sation, drying, absorption, fusion of solid particles being
transported in liquid medium, etc. The difficulty of a
detailed experimental investigation of this system, namely
that to access to the drag coefficient and the Nusselt num-
ber, has stimulated a significant number of numerical sim-
ulations described in the literature.

In the same way as for wakes, the parabolized equation
approach may be valuable for investigating the boundary
layers [4] and far plumes [5] but is unadapted for the char-
acterization of the flow close to the rear stagnation point
and thus cannot provide useful global characteristics such
as the drag and the Nusselt number. The first to solve

mailto:kotouc@imfs.u-strasbg.fr


Nomenclature

CD drag coefficient (CD ¼ F D=
1
2 qv2

1
pd2

4 )

CðcÞD drag coefficient due to the pure forced convec-
tion

Cðf ÞD drag coefficient due to the pure free convection

CDud
D drag coefficient defined by Dudek et al.

(CDud
D ¼ F D=qm2)

CJia
D drag coefficient defined by Jia and Gogos

(CJia
D ¼ F D=

1
2 qv2

char
pd2

4 )

cp specific heat capacity
d sphere diameter
FD drag force
g gravitational acceleration vector
Gr Grashof number (bg(TS � T1)d3/m2)
Lin inlet size of the computational domain
Lout outlet size of the computational domain
Lrad sidewise size of the computational domain
Nu Nusselt number (Nu = ad/k)
Nuloc local Nusselt number
p pressure
Pr Prandtl number (m/j)
_Q heat flux
_Qcond pure conductive heat flux (calculated)
_Qcond;th pure conductive heat flux (theoretical)
r distance from the flow axis
R sphere radius
Re Reynolds number (vchard/m)
Rec critical Reynolds number for the onset of recir-

culation at the flow axis
Recrit critical Reynolds number for the regular bifur-

cation threshold
Rer critical Reynolds number for the separated flow

to reach the flow axis

Res critical Reynolds number for the onset of sepa-
ration off the flow axis

Ri Richardson number (Gr/Re2)
s spherical radial coordinate
t time
T temperature
v velocity vector
v velocity
vchar characteristic velocity
x axial coordinate

Greek symbols

a heat transfer coefficient
b thermal expansion coefficient
Ud angle of the boundary layer separation mea-

sured from the front stagnation point
Ur angle of the boundary layer reattachment
j thermal diffusivity
k thermal conductivity
m cinematic viscosity
h spherical angular coordinate
q fluid density

Subscripts

h tangential direction
r direction perpendicular to the flow axis
S at sphere surface
x axial direction
1 at infinite distance from the sphere

Superscripts
* non-dimensionalizeds
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numerically the steady-state Navier–Stokes equations for
the case of free convection were Geoola and Cornish [6].
They presented values of drag coefficient and Nusselt num-
ber for Grashof numbers 0.05 6 Gr 6 50 (Gr based on the
sphere radius R: Gr = bg(TS � T1)R3/m2). In a later paper
[7], they presented transient results of Nu and CD up to
Gr = 12,500 for Pr = 0.72, 10 and 100. Dudek et al. [8] pre-
sented both experimental and numerical results for small
Grashof numbers, 4 � 10�4

6 Gr 6 0.5 and Pr = 0.72
(with the same definition of Gr as Geoola and Cornish).
Jia and Gogos [9] carried out the study for a wide range
of radius based Grashof numbers (101

6 Gr 6 108) and
for Pr = 0.72 and 7.

The earliest analytical studies on the combined effect of
free and forced convection in the configuration of assisting
flow are the works of Acrivos [10] (boundary–layer approx-
imation) and of Hieber and Gebhart [11] (matched asymp-
totic expansion, Gr and Re being small). First experiments
were carried out by Klyachko [12] and Yuge [13]. For recent
experiments with very small particles, an electrodynamic
chamber was used, see [14–18]. The published numerical
results on convection past a sphere are all axisymmetric.
The first to investigate numerically the assisting flow past
a spherical particle (by a finite difference method) were
Chen and Mucoglu [19]. In their work, they studied the sur-
face heat transfer and the wall shear on a sphere with con-
stant surface temperature for large Grashof and Reynolds
numbers and the Richardson number (Ri = Gr/Re2) rang-
ing from1 (free convection) to 0 (pure forced convection)
in the boundary layer approximation. The considered Pra-
ndtl number was 0.72. In their later work [20] they presented
the same study for a sphere with a uniform heat flux. Wong
et al. [21] solved the full Navier–Stokes and energy equation
of an isothermal sphere in combined convection by a finite
element method. Nguyen et al. [22] added two new features
to the results of previous works – the transient effects and
both internal and external thermal resistances (conjugate
problem). Nazar et al. [23] carried out a very similar study



Fig. 1. Problem description and coordinate system.
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to that of [19] for two values of Prandtl number 0.7 and 6.8.
Mograbi and Bar-Ziv [18] investigated, both experimentally
and numerically, the dynamics of a spherical particle in
mixed convection for small Grashof and Reynolds numbers
and, in another paper [24], proposed an approximate
expression for the drag.

The mixed convection in the configuration of opposing
flow has been the topic of investigations presented, for exam-
ple, in [15,17–20,22,23]. The dynamics of the opposing flow
appears to be more complex and more difficult to simulate
than that of assisting flow and will be treated elsewhere.

The present paper raises the question of the relevance of
axisymmetric simulations of assisting flows. This problem
has been thoroughly investigated for a non-heated sphere
both numerically and experimentally [25–28]. It appears
that the wake of a non-heated sphere undergoes a primary
regular bifurcation at the Reynolds number (based on the
sphere diameter) of 212. The flow becomes non-axisymmet-
ric but remains steady until Re � 275 [27,28] when a sec-
ondary Hopf bifurcation sets in. Later on (at Re = 500),
the wake was reported to be chaotic [29]. This complex
dynamics can be simulated only in fully three-dimensional
calculations and the instabilities completely modify both
the flow pattern and the hydrodynamic forces acting on
the sphere. As a result, in this case, axisymmetric simula-
tions are physically valuable only until the onset of the axi-
symmetry breaking.

In this paper, we focus basically to the limits of the axi-
symmetric regime of an assisting flow. The problem is for-
mulated mathematically in Section 2. The mathematical
formulation of the thermal effects is limited to the Bous-
sinesq approximation. All the numerical papers cited above
are based on this approximation. Nevertheless, in practical
applications, caution is required when deciding whether
this approximation is still applicable. It is widely accepted
that, in the air and water under normal laboratory condi-
tions, the Boussinesq approximation is applicable for a
thermal amplitude not exceeding several degrees. In [30,
p. 15], the acceptable temperature difference for the Bous-
sinesq approximation in the air and water is given, respec-
tively, as 15 and 2 K. In [31] a 10% accuracy is guaranteed
in fluid systems of laboratory size at 15 �C and atmospheric
pressure for temperature variations of less than 1.25� in
water and 28.6� in the air. Practically this means, in the
framework of the present paper, that very small and thus,
for the same Richardson number, significantly heated
spheres are not covered by the scope of the approximation.
Nonetheless, the Boussinesq approximation represents rea-
sonable laboratory conditions for experiments on the tran-
sition to turbulence in air and water. E.g., a specific
configuration of a sphere of diameter 11 cm brought to a
8� higher temperature than the surrounding air and placed
in a flow of velocity 0.2 m/s is characterized by a Reynolds
number of �1500 and a Richardson number of �0.7 corre-
sponding to the extreme regimes investigated in this paper.

The used numerical method obtained by adjoining the
temperature equation and the buoyancy term to the
method described in [28] is presented briefly in Section 3.
In the absence of thermal effects the numerical method
has been successfully validated in many situations [32–
34]. The simulation of heat and buoyancy effects is vali-
dated in the case of a free convection by comparison to a
large amount of available data in Section 4. The main
results are presented in Sections 5–7. The build up a recir-
culation zone is largely accepted to be a precursor sign of
instabilities in wakes (see [35] for the case of an unheated
cylinder, [36] for an assisting flow past a heated cylinder
or [37] for the unheated sphere). Our method of investiga-
tion follows the usual logic of investigation of transitional
flows consisting in increasing progressively the Reynolds
and (in the present case also) the Richardson number to
proceed from simpler to more complex regimes. As a con-
sequence, we first investigate the precursor signs of instabil-
ity before tackling the instability itself. As a result, Section
5, presented first and dealing with the Prandtl number
Pr = 0.72 (for which the largest amount of bibliographic
data is available) focuses on the detachment of the bound-
ary layer and on the formation of the recirculation zone.
Section 6 partly extends the results of Section 5 to other
Prandtl numbers, namely to Pr = 7. The drag coefficients
and Nusselt numbers are also given. Finally, Section 7 pre-
sents the results of the linear stability analysis of the flows
undergoing a primary, axisymmetry breaking, bifurcation.
The conclusions are drawn in Section 8.

2. Problem formulation

Our numerical simulations represent a hot sphere with a
constant surface temperature immersed in a cold incom-
pressible fluid. For the problem description and coordinate
system definition see Fig. 1. This situation is mathemati-
cally described by a system of Navier–Stokes equations
coupled with the energy equation (see for example [9]) for
the unsteady flow of an incompressible fluid with constant
properties. As stated in the introduction, the buoyancy
effects are characterized by the Boussinesq approximation.
The fluid properties are the density q, kinematic viscosity m,
thermal conductivity k, specific heat at constant pressure cp

and the coefficient of thermal expansion b. The equations
are non-dimensionalized using the following scaling: the
sphere diameter d as a length scale, vchar = v1, the free
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stream velocity in an assisting flow (or
vchar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgðT S � T1Þd

p
in the case of free convection) as

velocity scale, d/vchar as a time scale and qv2
char as a pressure

scale. The dimensionless temperature is defined as
T* = (T � T1)/(TS � T1). In what follows, we omit the
‘‘*” in the notation of the non-dimensionalized quantities,
thus v, p and T stand for non-dimensionalized velocity,
pressure and temperature, respectively. The dimensionless
equations become, for the mixed convection,

r � v ¼ 0 ð1Þ
ov

ot
þ ðv � rÞv ¼ �rp þ 1

Re
r2vþ Gr

Re2
T i ð2Þ

oT
ot
þ ðv � rÞT ¼ 1

Re:Pr
r2T : ð3Þ

where i = � g/jgj stands for the upward oriented unit ver-
tical vector. The non-dimensionalization reduces the
parameters to three non-dimensional numbers – Reynolds
number (Re), Grashof number (Gr) and Prandtl number
(Pr) defined as follows:

Re ¼ vchard
m

; Gr ¼ bgðT S � T1Þd3

m2
; Pr ¼ m

j
: ð4Þ

The combination of the first two parameters gives the
Richardson number (Ri = Gr/Re2), a non-dimensionalized
parameter comparing the effect of the natural convection
to that of the forced one.

In the case of free convection, the use of the velocity
scale vchar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgðT S � T1Þd

p
yields Re ¼

ffiffiffiffiffiffi
Gr
p

in Eqs. (2
and 3).

The boundary conditions are the no-slip boundary con-
dition and uniform unit temperature at the sphere surface S

vjS ¼ 0; T jS ¼ 1: ð5Þ

At infinity, the velocity tends to the free stream velocity v1
or to zero, for assisting flow or free convection, respec-
tively, and the temperature is assumed to be zero:

vj1 ¼ v1; T j1 ¼ 0: ð6Þ
3. Numerical method

The infinite domain is simulated by a cylindrical compu-
tational domain, the section in the radial–axial plane of
which is represented in Fig. 2. The domain axis is oriented
along the x-axis of Fig. 1. To simulate an infinite domain,
the size of the domain was thoroughly tested in all the
Lin

Lrad

Fig. 2. Example of a computational domain of 230 eleme
simulated regimes and adapted so that its extension
upstream, downstream and sidewise brought no significant
changes to the flow and, namely, no longer changed the
computed drag coefficient and Nusselt number, as well as
the regular instability threshold (see Appendix A for more
details on the testing). A good choice of boundary condi-
tions at the outer boundaries helps to reach the domain
independence. The boundary conditions in most simula-
tions consisted in setting the Dirichlet boundary condition
v = v1 and T = 0 at the inflow cylinder face and at its outer
perimeter. For most simulations the Reynolds numbers
were relatively high (up to on the order of 1500). In such
conditions, the combined wake/plume extends extremely
far downstream. The Neumann condition ov

on
¼ 0 and

oT
on ¼ 0, imposed in a weak sense, allows to keep the outflow
boundary at a reasonable distance without affecting the
solved flow [28]. This condition appears to present no
reflections in the transitional regimes and the flow remains
unaffected by the position of the outflow boundary of
the computational domain. Indeed, as can be seen from
the results of numerical testing presented in Appendix A,
the position of the outflow boundary is the numerical param-
eter that affects the least the obtained results. It is also to be
noted that the chosen Dirichlet and Neumann boundary
conditions fully determine the velocity field. As a conse-
quence, no boundary conditions need to be specified on
the pressure (see e.g. [38, p. 21], for the Dirichlet case).

The method of spatial discretization is described in
detail in [28] or [34]. It is based on the spectral element
decomposition (see [39,40]) in the radial–axial plane com-
bined with a spectral azimuthal decomposition to accom-
modate 3D flows. The implementation of the azimuthal
decomposition enables, in a very straightforward way
and at relatively low computing costs, the linear stability
analysis of the flow with respect to axisymmetry breaking
perturbations [33]. For the purpose of investigation of con-
vective flows, the solver described in Ref. [28] has been
completed by adding the energy equation. Moreover, the
significantly higher Reynolds numbers of the present study
imposed heavier requirements on the solution accuracy.
For this reason, the projection method of the pressure–
velocity coupling has been reformulated to yield an orthog-
onal projector within machine accuracy and a direct pres-
sure solver has been implemented. This resulted both in
an enhanced accuracy and in very significant gains of
CPU time. This was important not only because of the high
resolution needed but also because of the fact that the
Lout

nts with collocation points of the upper-left element.
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parametric study involved many points in the parameter
space. The investigation of the instability thresholds is,
itself, very sensitive to the space and time resolution and
significant amount of additional accuracy testing was nec-
essary to avoid spurious instabilities. This resulted in many
more runs. Moreover, as compared to the unheated sphere,
the linearized eigenvalue problem relative to the thermal
flow appears to present several almost zero eigenvalues
which makes it significantly more time consuming to isolate
the least stable or the most unstable one.

The mentioned discretization testing focused on the
parameters specified in Table 1. The domain size parame-
ters have already been discussed above. The break up into
spectral elements allows us to optimize the computational
effort depending on the length scales of the computed flow
structures. Within each spectral element the same number
of collocation points of the pseudo-spectral Gauss–Lob-
atto–Legendre polynomial approximation is used. The var-
iation of the number of collocation points (last column of
Table 1) controls the overall accuracy. For more details
on the results of testing refer to Appendix A.
4. Free convection

Although not the main focus of the paper, the free con-
vection, with only two parameters, a Prandtl number
mostly considered to be that of the air and a great number
of available, both experimental and numerical results, is an
important test case. In agreement with other numerical
Table 1
Upstream (Lin/d), downstream (Lout/d) and sidewise (Lrad/d) length of the
computational domain, number of elements in the mesh (NE) and number
of collocation points per element direction (NP) as a function of Re

Re Lin/d Lout/d Lrad/d NE NP

0–99 50 60 52 442 6
100–199 30 35 28 281 7
200–399 12 25 8 169 8
400–999 12 25 8 169 10
>1000 12 24 8 230 12
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Present work
Dudek et al.
Geoola & Cornish
Jia & Gogos

Fig. 3. (a) Drag coefficient and (b) overall Nusse
simulations, the present tests are axisymmetric which is
physically reasonable in the considered interval of Grashof
numbers ranging from 10�4 to 104. Our results are com-
pared to that of [7–9] in terms of drag coefficient and Nus-
selt number. Fig. 3a represents the drag coefficient defined
as

CDud
D ¼ F D

qm2
; ð7Þ

where FD stands for the drag, as a function of Grashof
number. Dudek et al. and Geoola and Cornish use the
above definition of the drag coefficient, Jia and Gogos de-
fine the drag coefficient as

CJia
D ¼

F D

1
2
qv2

char
pd2

4

; ð8Þ

which relates the two drag coefficients as follows:

CDud
D ¼ CJia

D

pGr
8
: ð9Þ

For low Grashof numbers (610) the dispersion of the
values is quite significant and may be due to the sensitivity
of the results to the domain size. For values of Gr P 10 we
obtain a perfect agreement with the results of Jia and
Gogos. Those of Geoola and Cornish seem to underesti-
mate the drag coefficient for low Gr but agree well with
those of Jia and Gogos at Gr = 103.

A very important characteristic of the flow is the Nusselt
number, characterizing the efficiency of the convection.
The Nusselt number is defined as the ratio of the total heat
flux to the purely conductive one. For a heated sphere in an
infinite medium, the conductive heat flux is

_Qcond;th ¼ 2pkðT S � T1Þd: ð10Þ

However, most bibliographic results use a Nusselt number
defined as

Nu ¼ ad
k
¼

_Q
pkðT S � T1Þd

¼ 2
_Q

_Qcond;th

: ð11Þ

We retain the factor 2 to facilitate the comparisons. Let us
note that, in view of the finite size of the numerical domain,
10
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lt number: the case of pure free convection.
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Fig. 4. Streamlines for the case of Ri = 0.5. (a) Attached flow at Re = 200
and (b) large recirculation zone downstream of the sphere at Re = 600.
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the numerical conductive heat flux _Qcond is different from
the theoretical value _Qcond;th (e.g. for the small domain opti-
mized for large Grashof numbers, we obtain, in the limit
Gr = 0, _Qcond ¼ 0:809 _Qcond;th, while for the domain used
for small Grashof numbers the same ratio is 0.985). To ob-
tain an asymptotic Nu value equal to 2 for Gr = 0 and also
to remain coherent with the fundamental definition, we use
the numerical conductive heat flux instead of the theoreti-
cal one in the definition (11) for computations at very
low Grashof numbers Gr 6 1.

We compared again the results of our simulation to
those of [7–9], see Fig. 3b. We obtain an excellent agree-
ment with the results of Dudek et al. (available only for
Gr 6 5) and of Jia and Gogos (available for Gr P 80).
Those of Geoola and Cornish are likely to underestimate
the Nusselt number for small Gr and to overestimate it
for high Gr.

In conclusion, namely the excellent agreement with the
most recent and complete results of Jia and Gogos allows
us to claim that our numerical method can be considered
as reliable and accurate.

5. Mixed convection – axisymmetric assisting flow for
Pr = 0.72

For wakes without buoyancy effects the flow separation
has been recognized as an early precursor sign of the tran-
sition (e.g. [35]). In the case of a non-heated sphere, the
flow separation results in a build up of recirculation very
early, at a Reynolds number of 20, while the primary bifur-
cation sets in only at Re = 212 [37]. In the assisting flow
past a sphere, the buoyancy effects accelerate the boundary
layer and thus delay significantly its separation. Moreover,
the build up of a convective plume tends to compensate the
recirculation. The purpose of this section is to investigate
the specificities of the combined shear and buoyancy effects
with a special focus to the flow separation. This axisymmet-
ric study is completed, in Section 7, by a stability investiga-
tion allowing to assess the relation between the loss of
axisymmetry and the flow separation. The parameter plane
is parameterized by the Reynolds and the Richardson num-
bers. This choice appears to be more convenient than that
of the Re � Gr parameterization because the results show
that all analogy with the unheated sphere seems to be lim-
ited to Richardson numbers smaller than 0.7. As a result, a
parameter domain of 0 6 Ri 6 0.7 and 0 6 Re 6 1500 is
swept.

For low Richardson numbers (Ri 6 0.4), the recircula-
tion sets in on the flow axis downstream of the sphere in
the same way as for an unheated sphere. The critical Rey-
nolds number in such a case will be denoted Rec. In con-
trast, for Richardson numbers 0.4 < Ri 6 0.7, we observe
first a boundary layer separation off the flow axis at a Rey-
nolds number denoted Res. This separation grows and gen-
erates a recirculation on the axis only later on at Rer > Res.
For Re < Res (or Re < Rec) and Re > Rec (or Re > Rer) we
observe no qualitative changes of the flow aspect compared
to the unheated sphere, because for Re < Res (or Re < Rec)
the flow is completely attached to the sphere surface
(Fig. 4a) and for Re > Rec or (Re > Rer), the flow presents
a single (growing) recirculation vortex (Fig. 4b), similar to
that of a non-heated sphere wake at Re > 20.82. The main
purpose was then to cover the interval [Res,Rer].
5.1. Two different scenarios of the onset of flow recirculation

As already noted, the simulations have shown two dif-
ferent scenarios of the onset of recirculation depending
on the Richardson number value.
5.1.1. Onset of the recirculation directly at the flow axis

For small Richardson numbers (0 6 Ri 6 0.4), the sce-
nario of the onset of flow recirculation is similar to that
of a non-heated sphere, see for example [37]. It is character-
ized by the critical Reynolds number Rec at which a recir-
culation appears downstream of the sphere (see Fig. 5a).
The only difference between non-heated sphere and heated
sphere is that the effect of free convection significantly
increases the value of Rec (see Table 2).
5.1.2. Boundary layer separation off the flow axis

For Ri > 0.4 we observe that the boundary layer starts
to separate off the flow axis at Re = Res (Fig. 5b). Depend-
ing on Ri, the separation angle Ud at the onset of the
boundary layer separation, measured from the front stag-
nation point, varies from 168� at Ri = 0.4 to 130� (at
Ri = 0.7). The vortex grows until it reaches the flow axis
and ends up by forming a recirculation zone along the axis
(Fig. 5c) at a higher Reynolds number Rer > Res. This
behavior is clearly due to the plume generated by the con-
vection, which accelerates the flow along the axis. As the
Richardson number increases, the separation torus has to



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

r

Fig. 5. Streamlines of observed flow patterns. (a) Recirculation downstream of the sphere at Ri = 0.1 and Re = 25 and (b) onset of the separation torus at
Ri = 0.425 and Re = 214 (the respective detachment and reattachment angles are Ud = 153� and Ur = 166�), (c) recirculation torus at the flow axis at
Ri = 0.425 and Re = 217.5, (d) separation torus growing to the flow axis off the rear stagnation point at Ri = 0.5 and Re = 380, (e) recirculation at the flow
axis downstream of the sphere at Ri = 0.5 and Re = 450, (f) flow separation at Ri = 0.7 and Re = 1470.
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become stronger to be able to overcome the axial plume. It
results in a large recirculation domain right at its onset (see
Fig. 5d and e at Ri = 0.5). At Ri P 0.57 the recirculation at
the flow axis is no longer reached in the laminar domain
delimited in the next section. Instead, a secondary separa-
tion vortex appears immediately downstream of the first
one (Fig. 5f). It is interesting to note that roughly the same
limit of existence of the recirculation zone was found exper-
imentally in [36] where the ‘‘suppression of the recircula-
tion bubble” is reported at Ri = 0.49 (i.e. 0.72)
independently of the Reynolds number.
The boundaries between the three domains of the three
regimes, the attached flow, the separation off the flow axis
and the recirculation at the axis have been explored in a
detailed parametric study and are represented in Fig. 6.
The representation is limited by the line beyond which
the axisymmetric regime is no longer stable, which is dis-
cussed in Section 7. The figure sums up the results of 360
simulations not all of which are represented. Special atten-
tion has been paid to track the boundaries of the sub-
domains the points of which have been plotted in Fig. 10
to allow for the assessment of the plot accuracy.



Table 2
Thresholds for investigated regimes for Pr = 0.72 (left) and Pr = 7 (right)
for varying Richardson numbers

Ri Rec (Res) Rer Recrit

Pr = 0.72

0 20.82 – 212.0
0.001 21.02 – 212.4
0.01 22.75 – 215.9
0.1 30.10 – 257.1
0.2 47.20 – 321.0
0.3 84.50 – 397.7
0.4 153.4 157.4 514.7
0.5 314.9 415.0 679.4
0.55 424.1 720.0 786.9
0.6 553.1 – 1020
0.7 959.0 – 1471

Pr = 7

0 20.82 – 212
0.1 31 – 240
0.2 58 – 287
0.25 96 101 324
0.3 161 240 383
0.35 261 460 516
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5.2. Drag coefficient

Fig. 7a represents the drag coefficient defined as [37]

CD ¼
F D

1
2
qv2
1

pd2

4

: ð12Þ

The figure represents curves of both constant Grashof and
Richardson numbers obtained by interpolation from about
360 computed values. Hieber and Gebhart [11] suggest to
split the value of the drag coefficient into two parts – a
part due to the forced flow CðcÞD and a part due to the
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R
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recirculation at the axis
separation off the flow axis
regular bifurcation threshold

Rec

Fig. 6. Diagram of the inv
free-convective flow Cðf ÞD (CD ¼ CðcÞD þ Cðf ÞD ). The contribu-
tion due to the heating grows with Gr or, equivalently, Ri

for a constant Re. This is the reason why for relatively
small Grashof numbers (Gr = 1,10 and 100) the value of
the drag coefficient is very close to that of an unheated
sphere (Gr = 0) and why the curves Gr = const. tend to
be superposed for high Reynolds numbers. The change be-
tween the two flow regimes, described in Section 5.1, has no
significant impact on the drag coefficient and the curves re-
main smooth. This allows to extend the law of Hieber and
Gebhart [11]

Cðf ÞD ¼
12

Re
½Riþ k1RiReþ k2Ri2 þ k3RiRe2logðReÞ�; ð13Þ

proposed for small Re and Gr and Ri = o(1), to the domain
represented in Fig. 7a by Grashof numbers ranging from 0
to 5 � 105, or Richardson numbers from 0 to 2 and Rey-
nolds numbers from 0 to 1000. We found very satisfactory
agreement for fits both at each Gr constant (See Fig. 7b)
and Ri constant. However, contrarily to Hieber and Geb-
hart, we found it impossible to obtain a satisfactory fully
2-D fit with coefficients k1, k2 and k3 independent of both
Re and Gr (or Ri) in our much larger parameter domain.
5.3. Nusselt number and velocity profiles

Let’s define the local Nusselt number as [6]

Nuloc ¼ �2k
oT
on

� �
pd2

_Qcond

; ð14Þ

where _Qcond is the purely conductive (numerical) heat flux.
This definition yields the overall Nusselt number as the
mean value [6]
0.4 0.5 0.6 0.7
Ri

Rer
Res

estigated flow regimes.
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coefficient on Re for Grashof numbers Gr = 0,103, 104, 2 � 104, 4 � 104, 105, 2 � 105, 3.5 � 105, 5 � 105 (solid lines) and Ri = 0–2 incremented by 0.2
(dashed lines); the solid line for Gr = 0 and the dashed line for Ri = 0 are identical. The thick solid line connects the points where the large recirculation
zone downstream of the sphere sets in. (b) Comparison of the computed contribution of the free convection to the drag coefficient to the law of Hieber and
Gebhart (two more Gr values, 10 and 100, are added).
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Nu ¼ 4

pd2

Z
S

Nuloc dS: ð15Þ
The local Nusselt number is shown in Fig. 8a for the case
of Ri = 0.5 and four Reynolds numbers covering roughly
the transition from the attached flow to the recirculation
zone (see also Fig. 5d and e). On the upstream surface of
the sphere (0� 6 h 6 100�) the local Nusselt number in-
creases with the Reynolds number. This is due to the veloc-
ity and temperature boundary layer getting thinner with
growing Re. All four curves meet close to the point
h � 102� and from that point on an inverse effect sets in
– the boundary layers thicken and the local Nusselt number
decreases with increasing Re. The curves meet once again
close to h � 160�. It can bee seen that the local heat ex-
change parameter is not significantly influenced by the flow
separation except in the final regime with the large recircu-
lation zone. The explanation is obvious from Fig. 9b where
tangential velocity profiles at Ri = 0.5 and Re = 400 (a flow
regime with a large separation torus touching the flow axis
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Fig. 8. (a) The local Nusselt number for Ri = 0.5 and Re = 200, 350, 400 and
constant Grashof and Richardson numbers (same values as in Fig. 7a). Th
downstream of the sphere sets in.
before the onset of the recirculation) are traced (Fig. 9a
shows the flow pattern and the angles where the tangential
velocities profiles were plotted). As can be seen from
Fig. 9b, the velocity magnitude in the separated boundary
layers is nearly 0 and the heat exchange is thus very limited.
For a higher Re (>415), when the final recirculation down-
stream of the sphere sets in, the upstream flow along the
flow axis is significant and thus the cold fluid from outside
the sphere is mixed with the fluid near the sphere which re-
sults in a significantly increased local Nusselt number.

Fig. 8b shows the overall Nusselt number defined by Eq.
(11) for selected Grashof numbers as a function of Rey-
nolds number. In the same way as in Fig. 7a, curves at con-
stant Gr and Ri are represented. The thick solid line
connects the points where the final recirculation zone
downstream of the sphere sets in. The enhancement of
the heat transfer rate due to this recirculation zone
becomes visible namely on the curves corresponding to
high Grashof numbers (Gr P 105) as the change of the
slopes of the curves.
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6. Mixed convection – assisting flow, effect of varying

Prandtl number

In Section 5 we presented a detailed study for the case of
Pr = 0.72. However, the study of the mixed convection
would be incomplete if the effect of the Prandtl number
were ignored. The aim of this section is not to provide a
detailed study but to show how the results of Section 5
change when the Prandtl number increases or decreases.

6.1. Flow regimes

The three different flow regimes (attached flow, separa-
tion torus off the flow axis and the recirculation zone
downstream of the sphere), studied in detail in previous
section for Pr = 0.72, exist equally for Pr = 7 (see
Fig. 10). Roughly speaking, the diagram appears to shrink
within a smaller sub-domain of the two-parameter plane.
The same trend is likely to exist for Prandtl numbers
Pr 6 0.72 and Pr P 7.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1000

Ri

R
e

Pr=0.72
Pr=7

Fig. 10. Comparative phase diagram for Pr = 0.72 and 7. Dashed lines are
lines from Fig. 6 (Pr = 0.72), solid lines represent Pr = 7. Thick,
respectively solid and dashed lines, represent the regular instability
threshold. Points determined accurately at the sub-domain boundaries are
represented by solid dots.
6.2. Drag coefficient

Fig. 11 shows the drag coefficient for three Grashof
numbers and two Prandtl numbers Pr = 0.72 and 7. There
are no unexpected trends, for higher Pr the drag coefficient
is smaller. The black points represent the recirculation
onset (having no appreciable effect on the drag).
6.3. Nusselt number

Fig. 12a shows the overall Nusselt number for the same
Grashof and Prandtl numbers as in the previous section.
Naturally, the overall Nusselt number is higher for higher
Prandtl number for a constant Gr because the conduction
is reduced and there are higher temperature gradients at
the sphere surface. The curves for Pr = 7 cross each other,
which was not observed for Pr = 0.72. Due to the small
thermal diffusivity, the convective heat exchange is more
sensitive to the flow pattern. This is why the curves exhibit
a significant change in derivative when the fluid starts to
recirculate at the flow axis downstream of the sphere.
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Fig. 11. Comparison of the drag coefficient for Pr = 0.72 and 7 and for
Gr = 104,4 � 104 and 105. The points represent the onset of the large
recirculation zone downstream of the sphere.
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Thanks to that enhancement of heat exchange, the curve
for a lower Grashof number crosses the curve of a higher
Grashof number at a Reynolds number at which, in the
former case, a large recirculation zone has set in and in
the latter one the flow is still attached. This is visible in
Fig. 12b where the local Nusselt numbers for both cases
are plotted, the dash-dotted line representing the flow-
detachment angle for the case of Gr = 104. Fig. 13 shows
the corresponding flow patterns.

6.4. Extreme variation of the Prandtl number at constant Ri

and Re

To study the effect of extreme Prandtl number values on
the flow properties, we fixed the Richardson number at
Ri = 1, the Reynolds number at Re = 100 and varied the
Prandtl number from 0.1 to 100. Ri and Re were chosen
so that the flow regime remains the same for all Prandtl
numbers – the flow is attached.
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Fig. 13. The axial velocity isolines at Re = 480 and Pr = 7. (a) Gr = 104

(Ri = 0.043) and (b) Gr = 105 (Ri = 0.43).
Fig. 14a shows the drag coefficient as a function of Pra-
ndtl number. The drag coefficient is practically constant for
Pr P 20. There is no net trend toward the value of 1.1 cor-
responding to the absence of heat transfer. This may be due
to an insufficient resolution of the thermal boundary layer
for very high Prandtl numbers.

The total heat flux tends asymptotically to zero like
Pr�1. More accurately, the 1= _Q vs. Pr dependence for
Pr P 40 fits quite precisely to the linear law

1
_Q
¼ 18:90þ 0:72Pr; ð16Þ

which means that the Nusselt number behaves like

Nu ¼ Re
p

Pr
18:90þ 0:72Pr

ð17Þ

for large Prandtl numbers. Fig. 14b shows the overall Nus-
selt number as a function of Prandtl number, both the com-
puted values and the law (17) are plotted.

To illustrate the influence of Prandtl number on the
flow, the pressure at the sphere surface and flow axis
(Fig. 15) as well as the temperature, axial velocity
iso-values and the axial velocity profiles at several stations
x (Fig. 16) for the two limit cases of Pr = 0.1 and 100 are
plotted. As can be seen from the temperature plot, the
greater Prandtl number the thinner the temperature bound-
ary layer, which results in a reduced acceleration of the
fluid due to the buoyancy. Also the buoyant plume is very
thin for high Pr and is visible on the axial velocity profiles
as a maximum at the flow axis.
7. Primary bifurcation and loss of axisymmetry for Pr = 0.72

and Pr = 7

The theory of axisymmetry breaking used in this section
was exposed in detail in [28] (Section 2 of the cited paper).
It has been namely shown that the axisymmetry of the base
flow, equivalent to the fact that the linearized, fully three-
dimensional, Navier–Stokes operator commutes with the
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operator of rotation o/oh around the flow axis, implies that
the linear stability problem can be split up by projection
onto subspaces characterized by a specific azimuthal wave-
number m.

Our 3D Navier–Stokes solver based on the azimuthal
Fourier expansion of the solution inspired by the non-lin-
ear theory, presented also in the same Section 2 of the cited
paper [28], allows to solve directly the eigenvalue problem
by truncating the azimuthal Fourier expansion to just one
m-mode. This method has been applied to assess the stabil-
ity of the steady axisymmetric solutions investigated in the
preceding sections, i.e. at Pr = 0.72 and Pr = 7. The linear
analysis of [28] carried out for an unheated sphere yields, in
agreement with [25] and a series of other numerical and
experimental papers cited therein, an unstable m = 1 mode
associated to a real eigenvalue (regular bifurcation) show-
ing that the first stage of axisymmetry breaking is steady
and is characterized by a single period in the azimuthal
direction.

A similar scenario has been confirmed up to Ri = 0.7 at
Pr = 0.72 and up to Ri = 0.35 at Pr = 7. We solved the lin-
earized eigenvalue problem for the least stable (most unsta-
ble) eigenvalue for varying Ri while focusing on the
determination of the Reynolds numbers corresponding to
the instability thresholds. The latter are obtained with a
good accuracy by interpolation of amplification rates
(eigenvalues) obtained from a pair of computations, one
at a sub-critical and the other at a supercritical Reynolds
number, both chosen close to the threshold. The mesh
independence of computed eigenvalues has been tested,
which resulted in further mesh refinement, in particular
in the domain of higher Reynolds numbers. A sample of
tests confirming the numerical convergence of the results
is given in Appendix A.

The obtained regular instability thresholds are reported
in Figs. 6 (thick solid line), 10 and in Table 2. The (axisym-
metric and unstable) base flow at Pr = 0.72, Ri = 0.5 and
Re = 730 is represented along with the streamwise velocity
and temperature components of the unstable linear mode
in Fig. 17. The effect of the mode is to deflect the central
line of the wake/plume off the flow axis. In the same way
as in the case of an unheated sphere of [28], the axisymme-
try breaking bifurcation leads to a stable steady but non-
axisymmetric flow. An example of such a flow is repre-
sented in Fig. 18 resulting from a fully 3D and thus fully
non-linear simulation. (Note that the represented axial vor-
ticity is zero for an axisymmetric flow.) The instability
thresholds grow rapidly with increasing Richardson num-
ber. For Pr = 0.72 and at about Ri � 0.7 the curve leaves
the investigated domain limited by a maximum Reynolds



x

r

0.1

T=1

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

x

r

0.1
T=1

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

x

r

0.1

0.5

0.9

1.1

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

x

r
0.1

0.5

0.91.1

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

x=0

x=1

x=1.5

x=2

r

v x

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

x=0

x=1

x=1.5

x=2

r

v x

Fig. 16. (a) Temperature iso-values, (b) axial velocity iso-values, (c) axial velocity profiles at various stations x. Ri = 1, Re = 100, Pr = 0.1 (left) and
Pr = 100 (right).

0 0.4 0.8

1.2

1.2

1
1

0.020.010
-0.005

x

r

0.7
0.5 0.3

0.1

−1 0 1 2 3 4 5

x
0 1 2 3 4 5

x
−1 0 1 2 3 4 5

x
−1 0 1 2 3 4 5

0

0.5

1

r

−1
0

0.5

1

r

0

0.5

1

r

0

0.5

1

T=1
-0.01 0.01 0.02T=1

Fig. 17. (a) Axial velocity iso-values of the base flow (left) and of the linear mode (right), (b) temperature iso-values at Ri = 0.5, Re = 730. The linear
mode is normalized so that the maximal value of axial velocity is 1 (this value lies at the domain outflow not represented in the figure).
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Fig. 18. (a) Iso-surfaces of axial vorticity at xx = ± 0.15 (the two vorticity threads are contra-rotating), (b) temperature iso-surface T = 0.4 at Ri = 0.5,
Re = 730.

Table 3
Test of the grid dependence on the number of collocation points per
element direction NP (a), on Lin/d (b), Lout/d (c) and Lrad/d (d) (see Fig. 2
for the definition of the symbols)

Panel (a)

NP 8 10 12 14

CD 0.55424 0.55521 0.55546 0.55516
Nu 23.330 24.243 24.056 24.028
Recrit 1479.3 1473.8 1470.6 1470.3

Panel (b)

Lin/d 8 12 16 24

CD 0.55564 0.55546 0.55536 0.55539
Nu 24.056 24.056 24.055 24.055
Recrit 1469.1 1470.6 1472.6 1472.3

Panel (c)

Lout/d 16 24 32 48

CD 0.55539 0.55546 0.55539 0.55539
Nu 24.055 24.056 24.055 24.055
Recrit 1472.4 1470.6 1471.9 1472.1

Panel (d)

Lrad/d 4 8 12 20

CD 0.55646 0.555546 0.55544 0.55554
Nu 24.063 24.056 24.055 24.056
Recrit 1452.3 1470.6 1472.4 1471.4

The tests result from varying the parameters of the reference domain Lin/
d = 12, Lout/d = 24, Lrad/d = 8 of 230 elements. Each time the parameter
indicated on top left of the table is varied. The drag coefficient CD and the
Nusselt number Nu are computed at Ri = 0.7 and Re = 1470. The critical
Reynolds numbers are evaluated by interpolation from amplification rates
at Reynolds numbers lying below and above the instability threshold (in
most cases between Re = 1470 and Re = 1490).
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number of 1500 (at the limit of reasonable computing
costs). It is interesting to note that the Prandtl number does
not modify significantly the instability threshold within the
investigated domain. At Pr = 7, the instability threshold
lies below that obtained at Pr = 0.72, but both lines cross
at Ri � 0.3. It can be seen that the computations presented
in Sections 5 and 6 lie well within the stability domain of
the axisymmetric flow at Pr = 0.72. For the same Pr and
Ri P 0.57 it is clearly seen that the build up of the recircu-
lation zone at the axis is no longer a necessary condition
for the instability, nevertheless the flow separation sets in
always well below the instability threshold and both curves,
that relative to the flow separation and that of the instabil-
ity threshold, remain parallel. This lets us to assume that
the flow separation is likely to be a precursor sign of a reg-
ular bifurcation even at higher Richardson numbers unless
another type of instability appears. Let us note that it
might be a tricky and not necessarily physically relevant
problem to try to track linear instabilities at higher Rey-
nolds numbers. E.g., for cold axisymmetric jets there is
no consensus whether they are linearly stable at all Rey-
nolds numbers, nevertheless, there is a wide consensus
going in the direction of a by-pass transition due to the
receptivity to finite perturbations. This is likely to be the
case for assisting flows at higher Richardson numbers at
which the convective plume becomes dominant.

8. Conclusion

The scenario of the loss of axisymmetry of the mixed
convection in the configuration of assisting flow past a
heated sphere has been investigated fully for the Richard-
son number of 0 6 Ri 6 0.7 and Reynolds numbers up to
1500 at Pr = 0.72 and for 0 6 Ri 6 0.35 and Re < 550 at
Pr = 7. It has been shown that the acceleration of the flow
due to buoyancy considerably stabilizes the flow and
pushes the onset of instabilities from Re = 212 for an
unheated sphere to Re = 1470 at Ri = 0.7 and Pr = 0.72.
At so high Richardson numbers the convective plume
downstream of the sphere is so strong that it prevents the
recirculation at the flow axis but the flow separation off
the flow axis precedes the transition.

Within the domain of stability of the axisymmetric flow,
we provide some useful results concerning the drag coeffi-
cient and the Nusselt number of the heated sphere. The
analysis of the loss of axisymmetry puts the precision and
reliability of the simulation under a particularly severe con-
straint. As a result, the drag and Nusselt number values
obtained are likely to be very close to accurate. The proof
that the flow remains stable to rather high Reynolds num-
bers gives credit of physical relevance also to the less
detailed investigation of the effects of variable Prandtl
numbers presented in Section 6. In view of this study,
namely of the diagram in Fig. 10, the stabilizing trend for
increasing Richardson number is to be expected to be stee-
per for Pr > 0.72 and slower for Pr < 0.72 as compared to
that reported in Fig. 6 and Table 2, which might be
explainable by high temperature gradients in the boundary
layers for high Prandtl numbers.
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It may be reassuring to find that many axisymmetric
results provided in the bibliography are likely to keep
their physical relevance unless other mechanisms such
as receptivity to finite perturbations are taken into
account.

Appendix A. Tests of grid dependence

Table 3 presents a sample of results of numerical testing.
Similar testing was carried out systematically at different
flow regimes because each flow regime puts the discretiza-
tion to a different constraint. At high Reynolds numbers,
the resolution of the boundary layer is critical whereas at
low Reynolds it is important to verify whether the domain
extension is sufficient to eliminate spurious confinement by
too closely placed boundaries. Here we choose the case of
extreme Reynolds and Richardson values putting the mesh
refinement under the most severe test. The values reported
in the tables provide a clear idea of the accuracy of the
domain mentioned on the last line of Table 1 and used
for Pr = 0.72 and Ri = 0.7 close to Re = 1500. Similar
accuracies are achieved for all other domains in their corre-
sponding regimes.
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